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a b s t r a c t

Permeable reactive barriers (PRBs) are being employed for in situ site remediation of groundwater that is
typically flowing under natural gradients. Site characterization is of critical importance to the success of
a PRB. A design-specific site exploration approach called quantitatively directed exploration (QDE) is pre-
sented. The QDE approach employs three spatially related matrices: (1) covariance of input parameters, (2)
sensitivity of model outputs, and (3) covariance of model outputs to identify the most important location
to explore based on a specific design. Sampling at the location that most reduces overall site uncertainty
produces a higher probability of success of a particular design. The QDE approach is demonstrated on
ite exploration
ncertainty analysis

the Kansas City Plant, Kansas City, MO, a case study where a PRB was installed and failed. It is shown
that additional quantitatively directed site exploration during the design phase could have prevented the
remedial failure that was caused by missing a geologic body having high hydraulic conductivity at the
south end of the barrier. The most contributing input parameter approach using head uncertainty clearly
indicated where the next sampling should be made toward the high hydraulic conductivity zone. This case
study demonstrates the need to include the specific design as well as site characterization uncertainty
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. Introduction

Permeable reactive barriers (PRBs) are being employed as an
n situ treatment technology for groundwater contamination. A
RB is designed to intercept a plume of contaminated groundwater
oving under the natural gradient and transform the contaminant

nto an environmentally acceptable form. The goal is to have con-
aminant levels below target concentration at compliance points
own gradient of the barrier. The barrier is made out of a reac-
ive media that is selected based on the type of contaminant. The

ost common form of reactive media is zero-valent iron (Fe0).
hen, for example, chlorinated organics come in contact with Fe0,

hey are potentially degraded into nontoxic dehalogenated organic
ompounds and inorganic chloride [1]. The ability of a PRB to
ehalogenate a compound is a significant benefit, especially for a

lume of dense non-aqueous phase liquid (DNAPL). This is because
he residuals of a DNAPL contamination cannot be easily located
nd may continue to generate a plume of dissolved hydrocarbons
2]. Although the pump and treat (PT) technique can control such
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DNAPL plume, PT requires extensive long-term maintenance and
ontinual energy input. In contrast, a DNAPL plume can be con-
rolled with a PRB with minimal maintenance because PRBs operate
n a totally passive manner. Other advantages of PRBs are: (1) con-
aminants are treated away from the surface, which minimizes
orker and public exposure to toxic contaminants and (2) waste

onstituents are concentrated into a relatively small volume within
he treatment zone, which is the barrier itself.

There are several disadvantages of using PRBs though. First,
ong-term performance of PRBs may generate preferential flows
hrough the barrier with pore clogging, thus the PRB itself becomes
eterogeneous and ineffective for treatment [3]. Second, hydraulic
eterogeneity of the subsurface around the barrier can cause so
uch uncertainty in performance that use of a passive PRB is pre-

luded [4]. Schipper et al. [5] investigated the effect of hydraulic
onductivity change during the construction of denitrification wall
nd found that the performance of permeable wall approaches
as highly dependent on the aquifer material. Gupta and Fox [6]

mplemented groundwater flow modeling and particle tracking

echniques to find how aquifer heterogeneity affects the perfor-

ance of PRB for different design parameters such as the capture
one width, residence time, flow velocity, and discharge.

US Environmental Protection Agency (EPA) [7] reported the use
f PRBs for contaminated groundwater treatment at 47 sites in

http://www.sciencedirect.com/science/journal/03043894
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he United States, Canada, and selected locations abroad. One of
he lessons learned from this study was the importance of exten-
ive site characterization during the design phase, which is the
eriod when the remedial design parameters are determined and
he best remedial option is selected. Two cases were presented
n the EPA report, The Kansas City Plant (KCP) case and the Fry
anyon case, which demonstrate how insufficient site character-

zation affected the performance of the PRBs. At the KCP site a
ontinuous trench PRB was designed and installed to treat 1,2-
ichloroethylene (1,2-DCE) and vinyl chloride (VC). It was found
uring operation that a high concentration of contaminants was
assing around the end of the barrier due to a high conductive zone,
hich was not detected during the design site exploration phase.

he Fry Canyon site adopted a funnel-and-gate design to treat
ranium contamination in groundwater. Although the design had
unnels—no flow barriers to block the bypass of contaminants, the
ncomplete contact between the uneven surface of the underlying
onfining unit and the gates provided pathways for contaminated
roundwater. In addition, a large bedrock nose was detected during
he PRB installation and resulted in re-orientation of the PRB with
n oblique angle into the funnels. Therefore, the design should be
ite-specific with a thorough understanding of subsurface hetero-
eneity.

It is suggested that a design phase of site exploration be
mployed to select an appropriate remediation technique, which
s then followed by a design-specific site exploration. Additional
ite exploration is usually not considered after the remedial design
s chosen. Case studies indicate that if additional site exploration
ad been performed with a specific design in mind, many cases
f remedial failure could have been avoided. It should be noted
hat the additional site exploration should be design-specific so
hat the additional information can be used to optimize the design
arameters to avoid potential failure.

Four aspects of site characterization that should be evaluated
efore implementing a PRB are: (1) hydrogeology, (2) contaminant

oading, (3) geochemistry, and (4) microbiology [8]. Hydrogeologic
haracterization must be done accurately as it determines ground-
ater flow patterns and the distribution of the contaminant plume.

naccurate flow patterns may cause bypass of contaminant around
he barrier and lead to a potential failure of remediation. It is also
ecessary to have an adequate contaminant characterization (such
s maximum concentration) and total mass of contaminant as these
arameters determine the dimensions of the PRB. Geochemical
haracterization is needed for estimating the expected life of a
RB system because, for example, the potential effect of precipi-
ation buildup on the medium may cause bypassing of the barrier.
he microbial aspects of the PRB should be known as well since
he interactions of native microbial populations, contaminants, and
eactive barrier materials are quite complex.

It is well documented in the literature that hydrogeologic site
haracterization is critical to the success of a PRB, yet there are
elatively few studies emphasizing site characterization for PRBs.
ost PRB studies focus on the determination of PRB design param-

ters such as length, thickness, angle, or hydraulic conductivity
f the barrier and simply employ a groundwater flow model to
ssist in the design parameter determination (for example, Scott
nd Folkes [9]). Although not the primary focus of a paper, some
esearch has been published on the uncertainty of site conditions
ssociated with PRBs’ design parameters [10]. Heterogeneity of the
ydrogeologic settings and its effect on the performance of PRBs has

een secondarily considered [11,12]. Typically a stochastic approach
sing a Monte Carlo simulation is employed to propagate hydro-
eologic uncertainty through a model to the result. Accounting
or uncertainty is critical to the success of a PRB, but additional
irected site exploration to reduce the uncertainty in site condi-
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ions prove a more economical and conservative approach rather
han over-designing caused by a lack of data.

Unlike current published literature, the present study focuses on
dditional site exploration after a specific design has been selected.
he present approach may reduce the uncertainty in site condi-
ions and find potentially hidden hydrogeologic structures that

ay adversely affect the performance of a PRB. Published site
xploration studies for hydrologic conditions generally focus on
odel calibration [13–16]. The unknown or inaccurate parame-

ers are calibrated by minimizing the differences between observed
ata and model outputs—typically head elevation and concentra-
ion. Methods exist to improve model calibration through directed
xploration that employs a number of techniques including: pre-
iction sensitivity and kriged error variance [17,18], minimizing
odel prediction uncertainty [15], composite scaled sensitivities

19], and value of improved information [20]. Cirpka et al. [21]
mployed a first-order second moment (FOSM) method to deter-
ine whether the funnel-and-gate system would succeed or fail

y tracing variance reduction in the streamline functions. The
osition of most data worth for the variance reduction becomes
n additional sampling location, so that the reliability of deci-
ion for the design success or failure increases. The quantitatively
irected exploration (QDE) approach presented herein is very close
o the study of Cirpka et al. [21] in a sense of directed sam-
ling using uncertainty. The difference is that instead of using
he PRB performance, we identify which input data have the
reatest effect on model results given a specific design by re-
rranging matrix calculation in FOSM and find the data location
hat contributes the most to output variances across a site for

given PRB design. The original concept for QDE was to direct
xploration to the location of greatest variance in model out-
uts, which is where model results are most uncertain [22–24].
his QDE approach has been successfully applied to groundwa-
er remediation to find a next sampling location that is most
ikely to increase remedial design reliability [22]. Further develop-

ent of the QDE approach by Graettinger et al. [23] investigated
nd evaluated seven different techniques to direct exploration
hrough re-analysis and comparison of the input variance matrix,
utput variance matrix, and model sensitivity matrix using MOD-
LOW 2000 [16]. This work determined that the piezometric head
odel was most improved by obtaining additional samples at

ocations where input information contributed the most to over-
ll output variance. Lee [22] showed how directed exploration
ncreased design reliability as compared to random sampling for

PT method. Additional QDE sampling of transmissivity reduced
he uncertainty of predicted concentration while the sensitivity
f predicted concentration to transmissivity did not significantly
hange.

In the study presented herein, we adopted the QDE approach to
emonstrate how additional exploration produces a higher proba-
ility of success of a particular PRB design. We used the KCP case
tudy to show how QDE is able to detect unrevealed site conditions
hat may affect the performance of PRBs.

. Methodology

All QDE approaches in Graettinger et al. [23] are based on three
atrices: (1) covariance of input parameters, (2) sensitivity of
odel outputs, and (3) covariance of model outputs. Each of the
ata elements in these matrices is related to a specific location
ithin a site. Therefore a precise parameter and location can be

dentified for additional sampling. Each of these matrices, input
ovariance, model sensitivity, and output covariance, are described
n detail in this section.
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Fig. 1. Plan view of groundwater flow and initial plume geometry including six
initial sample borings and the reactive barrier. The maximum concentration of the
plume is 2000 �g/L for 1,2-DCE and the head elevations are constant at both the east
and west ends of the site. The unit of head elevation is m.

Table 1
Hydraulic conductivities at the six initial sample locations

Well no. X (m) Y (m) Hydraulic conductivities
(m/day)

1 54.9 48.8 10.4
2 57.9 48.8 9.8
3 61.0 48.8 9.1
4
5
6

h

C

H
n
c
c

Using the input parameter and covariance files produced by Eqs.
(1) and (2), and the sensitivity matrix from the direct derivative cod-
ing (DDC) calculation, covariances in predicted piezometric head
and concentration are calculated for the entire model using Eq. (3).

Table 2
Input parameters used to model the KCP site

Values

Hydraulic parameters
Longitudinal dispersivity (aL) 0.6 m
Transverse dispersivity (aT) 0.3 m
Diffusion coefficient 4.7 × 10−4 m2/day
Storativity 0.001
Porosity 0.33

Numerical parameters
Area size 121.9 m × 91.4 m
24 J. Lee et al. / Journal of Hazard

.1. Input parameter estimation and covariance

The QDE approach uses a multivariate normally distributed con-
itional probability calculation to interpolate and extrapolate input
arameters. This calculation generates a regularized grid of input
ata values and associated spatially distributed uncertainty (covari-
nce) that is assumed to be normally distributed about the mean
alue of the input data at each finite difference grid location. For
he KCP case study presented, hydraulic conductivity is the uncer-
ain spatially distributed input parameter. During estimation of
ydraulic conductivity, the measured hydraulic conductivities at
ampled locations are stored in a vector, V. Next, a vector, E(U),
s produced that contains a prior estimate of mean hydraulic con-
uctivity at each grid point. Finally an informed prior covariance
atrix, Cov(U), is calculated by employing a variogram function

hat represents the covariance relationships between the known
ydraulic conductivities at sampled locations. From these matri-
es, the prior estimates, E(U) and Cov(U), are updated to posteriors,
(U|V) and Cov(U|V), using data from the sampled points, through
he following equations [25]:

(U|V) = E(U) + Cov(U, V)Cov(V)−1(V − E(V)) (1)

ov(U|V) = Cov(U) − Cov(U, V)Cov(V)−1Cov(V, U) (2)

E(U|V) is the updated vector of hydraulic conductivities given the
nown hydraulic conductivities at the sampled locations. Cov(U,
) is a subset of the full covariance matrix that stores the covari-
nce between the hydraulic conductivities being estimated and the
nown hydraulic conductivities at sampled locations. Cov(V)−1 is
gain a subset of the full covariance matrix, and is the inverse of
he covariance between the known hydraulic conductivities. E(V)
s a subset of E(U) and holds the prior hydraulic conductivities esti-

ates at the sampled locations. Cov(U|V) is the updated covariance
atrix, and Cov(U) is the prior covariance matrix, calculated by the

ovariance function. A FORTRAN program was written to estimate
he hydraulic conductivity data and its associated uncertainty using
onditional probability calculations shown in Eqs. (1) and (2). Gen-
rated output files were then used as input for groundwater flow
nd contaminant transport models.

.2. Model sensitivity

The sensitivity matrix was calculated by the DDC method
22,26]. In the DDC method, derivatives of dependent variables are
oded directly in to the original program, which then simultane-
usly produces model outputs and derivatives of those outputs. The
DC method is based on the chain rule of differentiation. The DDC
ifferentiates all variables related to dependent variables such as
ead and/or concentration in a sequential manner. Programming of
he derivatives was accomplished by hand coding and by employing
DIFOR 2.0 [27], which is an automated derivative coding pro-
ram. In our case study, a flow model and a transport model are
ndependent simulators, so the derivatives of head and concentra-
ion were produced independently by ADIFOR 2.0, and then linked
y the derivatives of Darcian velocities, which were programmed
anually. Details of the DDC process are described in Lee [22].

.3. First-order second moment (FOSM) calculation
Within the QDE framework, input parameter covariance and
odel sensitivity are combined through a first-order Taylor series

xpansion to produce the variance in computed output. For exam-
le, calculation of piezometric head covariance from correlated
61.0 45.7 9.1
67.1 42.7 8.2
82.3 79.3 3.4

ydraulic conductivities is shown by Eq. (3) [28].

ov[hl, hk] ≈
n∑

i=1

n∑
j=1

(
∂hl

∂K̄i

)(
∂hk

∂K̄j

)
Cov[Ki, Kj] (3)

ere Cov[hl, hk] is the covariance of computed head (h) between
ode l and node k. (∂hk/∂K̄i) is the sensitivity of head at node k to a
hange in the hydraulic conductivity (K) at node i. Cov[Ki, Kj] is the
ovariance between hydraulic conductivities at nodes i and j.
Element size (triangular) 3 m × 3 m
Total number of nodes 1271
Total number of elements 1200
Size of time step 10 days
Total simulation time 100 days
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lene (TCE), 1,2-DCE and vinyl chloride are the major components
within the plume, which was more than 61 m wide in the vicin-
ity of the PRB. The immediate concern was VOC contamination
of the Blue River, a tributary of the Missouri River. A meander
loop of the Blue River was bypassed as part of a flood control

Table 3
Additional sampling locations and measured hydraulic conductivities

Approach Updating X (m) Y (m) Hydraulic conductivities
ig. 2. Updating hydraulic conductivity (K) distribution using MCI for head. (a) K
urface map from the initial six samples, (b) K surface map from the eight samples,
nd (c) K surface map from the ten samples.

The use of the FOSM method to find a next sampling location
as limitations. First, the derivatives are calculated at the expected
alue of the input parameter; therefore, if there is a large uncer-
ainty associated with the parameter then the derivative may not
e equal to the true derivative [28]. Second, input parameters are
ssumed to be statistically independent of each other. Finally, the
OSM method requires knowledge of the uncertainty associated
ith each input parameter, which in this example is produced from
conditional probability calculation based on the variogram model.

.4. QDE approaches

Among seven approaches presented in Graettinger et al. [23],
wo approaches, the largest variance (LV) and most contributing
nput (MCI) to output covariance were applied in this PRB exam-

le. The LV identifies the location of the largest output uncertainty
roduced from input parameters. This is the original QDE approach
roposed by Graettinger and Dowding [26] and Lee [22] that directs
xploration to the next sampling location where the output vari-
nce is the largest. The output variances are the diagonal elements

M

aterials 162 (2009) 222–229 225

f Cov[hl, hk] in Eq. (3). Although a variance in a model domain is
elated to a single cell at a site, its calculation is the sum of input
arameter covariance and model sensitivity from across a site, not
he single cell only. A situation can arise where the location of great-
st output variance has already been sampled. In this case, the input
ariance at that location is zero with the assumption of zero mea-
urement error, but that location still has the maximum uncertainty
ecause the output variance is a sum of information from across a
ite. Re-sampling at that location adds no new information to the
nalysis; therefore, the LV must identify the location of maximum
utput variance that has not been previously sampled.

The MCI approach to direct exploration chooses the location
here input parameter uncertainty contributes the most to out-
ut uncertainty. As discussed with the LV, it is possible to have the
aximum output variance at a location that has been previously

ampled. Re-sampling at that location will not improve the model
r reduce uncertainty. The FOSM equation, Eq. (3), is re-arranged
o sum output variance terms related to an input parameter at a
pecific location. Eq. (4) represents the contribution of a parameter
t ith location to the output variances across a site having n model
ells or nodes.

ont(i) =
n∑

j=1

{
n∑

k=1

(
∂hj

∂Ki

)
Cov(Ki, Kk)

(
∂hj

∂Kk

)}
(4)

Here, cont(i) is the contribution to output variance from an input
arameter, Ki, that is correlated with other parameters. By compar-

ng cont(i) from i = 1 to n for a given model, the maximum cont(i)
s the location of the input parameter that contributes the most to
otal output covariance.

In the present study, we use the MCI approach to choose the
ocation of largest cont(i) as the next sampling location and find
ow that additional measurement improves the PRB performance.
e also compare LV and MCI for head uncertainty and concentra-

ion uncertainty to show which approach is the best at reducing
ncertainty associated with a PRB design.

. Case study—Kansas City Plant, Kansas City, MO

In 1942 the Kansas City Plant (KCP) was built to produce aircraft
ngines during World War II and later non-nuclear components of
uclear weapons. The plant is located on the south side of down-
own Kansas City, MO. Presently, the KCP’s primary mission is to
roduce and procure non-nuclear electric, electronic, mechanical,
lastic, electromechanical, and non-fissionable metal components
or the Department of Energy’s (DOE’s) weapons program. Spills
nd accidental leaks from long time military production activities
esulted in soil and groundwater contamination.

A groundwater plume emanates from the northeast area of the
lant. Volatile organic compounds (VOCs) including trichloroethy-
(m/day)

CI for head
1st

64.0 79.2 0.9
51.8 12.2 15.5

2nd
39.6 76.2 2.4
76.2 18.3 24.4
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ig. 3. Predicted concentration distributions and MCI maps. (a) Concentration and (
oncentration and (f) MCI from ten samples. The white crossed boxes indicate the n

nitiative in the early 1960s. The existence of the old river structure
akes a complex hydrologic and geologic condition in this area.

asically, an upper clayey-silt layer is underlain by a basal gravel
ayer throughout the site. The thickness of each layer is non-uniform
nd sometimes disconnected. According to the slug and pumping
est results in DOE [29], the hydraulic conductivities in each layer
re highly varied; 0.3–61 m/day with an average of 10 m/day for the
asal gravel layer and 0.03–12 m/day with an average of 0.23 m/day
or the upper clayey-silt layer. The water levels in the more perme-
ble basal gravel layer were 0.3–0.6 m lower than the water levels in
he less permeable clayey-silt, thus creating a downward hydraulic
radient.

To prevent the transport of contaminant to the Blue River, an
nterceptor trench was dug, which contained the plume from 1990
ntil 1998. The PRB was installed to replace the interceptor trench in
998. Although this passive iron wall treated 97 percent of the con-

aminant mass, the performance and monitoring results showed
hat the contaminants were not being sufficiently degraded near
he southern end of the wall and bypass of the southern end of
he wall was occurring [29]. One explanation for the bypass was
hat the basal gravel layer in the southern quarter of the iron wall

a
f
7
K
T

I from the initial six samples. (c) Concentration and (d) MCI from eight samples. (e)
mpling location having the highest MCI values.

ad hydraulic conductivities ten times greater than those used dur-
ng the design of the PRB. If such a high conductive zone had been
etected during the design phase of the PRB, bypassing of the PRB
ould have been avoided.

The present study applies the QDE approach to the KCP site
n an attempt to detect the high conductive zone at the south
nd of the barrier during the design phase. Among the initial set
f measurements from the real sampling, we chose six locations
round the potential position of the barrier in Fig. 1 by assuming
hat directed sampling would start from such clustered distribution
f sampling. The six measurements of hydraulic conductivity are
isted in Table 1. Fig. 1 also shows the two-dimensional finite ele-

ent model for the study area. The size of the PRB is 67 m wide and
m thick with a hydraulic conductivity of 61 m/day. We assumed

he decay rate of the iron wall is 0.93/day. Both sides of the site
re set as constant head boundaries at 233.5 m for the west side

nd 231.6 m for the east side. Therefore, the groundwater flows
rom west to east. The allowable concentration after treatment is
0 �g/L. The uncertain input parameter is hydraulic conductivity,
. Other input parameters and numerical parameters are listed in
able 2.
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for concentration from the initial six measurements. To identify
ig. 4. MCI and LV maps. (a) LV map for head, (b) LV map for concentration, and (c)
CI map for concentration.

Employing the six hydraulic conductivity measurements from
he sample locations, the initial hydraulic conductivity distribution
or the site is calculated through a multivariate normally distributed
onditional probability calculation shown in Eq. (1). Although a
onstant prior hydraulic conductivity was used across the case
tudy site, a varying or trending prior could be employed. Mea-
ured hydraulic conductivities at the six locations are analyzed to
stimate their spatial continuity using a variogram function. Since
he multivariate conditional calculation employs a variogram, the
stimation of variogram parameters such as sill and range is the
rst step to extrapolate spatial input parameters. The estimates
f variogram parameters are, however, performed in a subjective
anner. The range, a measure of spatial continuity, influences the

moothness of the input information and uncertainty, while the sill,
measure of the variance in the data set, affects the magnitude of
he uncertainty [22,30]. The subjective nature of these estimates
ay affect the input parameters and associated uncertainty, and

herefore, may causes errors in estimating the true output and out-
ut uncertainty [31].

t
w
u
m
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For the six measurements, it was determined that the best-fit
ariogram is a Gaussian function. As the sampling locations are
lustered around the barrier, the range is short, only 18.3 m and the
ill is 5.57 m2/day2. Fig. 2(a) shows the hydraulic conductivity from
he six measurements as a surface calculated by Eq. (1). The full
ovariance matrix from Eq. (2) is multiplied by the full sensitivity
atrix using the MCI in Eq. (4).
Fig. 3(a) shows the predicted concentration of the plume after

00 days of transport. Although the figure shows that the barrier can
roperly treat the plume, we know the plume is uncertain because
f uncertain input data. Fig. 3(b) is the MCI map showing the con-
ribution of input parameter (hydraulic conductivity) to the output
head) uncertainty. On this map, dark areas show locations where
nput uncertainty contributes the most to output uncertainty. The
wo highest values of cont(i) from Eq. (4) are marked as cross sym-
ols at (X, Y) = (64.0 m, 79.2 m) and (51.8 m, 12.2 m) in Fig. 3(b). At
his point the site exploration would be directed to sample the site
t the two marked locations. In the present application, the K values
t the marked locations were estimated from reported DOE values
29]. The new data are listed in Table 3.

As the two new measured K values are significantly different
rom other six values that were initially provided, the continuity
nformation within the variogram for hydraulic conductivity should
e updated. The updated variogram has a sill of 37.2 m2/day2, which

s much higher than the previous sill from the original six measure-
ents, and the updated variogram has a longer range of 24.4 m.
ith the additional sampling at (X, Y) = (51.8 m, 12.2 m), the region

aving high K around the south end of the barrier is revealed (sur-
ace map shown in Fig. 2(b)). Fig. 3(c) shows the modeled plume
nd Fig. 3(d) shows the MCI map using the K distribution from the
ight samples. Compared to Fig. 3(b), Fig. 3(d) shows new locations
o sample, marked with a cross symbol.

With the additional two measurements, there is slight bypass
f contaminant at the south end of the barrier. Assuming that this
light bypass triggers additional sampling, two more additional
easurements should be taken at the marked locations in Fig. 3(d).

heir location and K values are listed in Table 3. A variogram analysis
as performed and it was found that the two additional mea-

urements in Fig. 3(d) do not significantly change the continuity
f hydraulic conductivity. Therefore, the same sill and the range
rom the previous variogram with eight measurements were used.
ig. 2(e) shows the updated K distribution with ten measurements.
he high K distribution with 24.4 m/day is clearly observed at the
outh end of the barrier while the low K distribution at about
.0 m/day is observed near the north end of the barrier. The highly
aried K distribution around the barrier significantly affects the
ovement of the plume. Fig. 3(e) shows the bypass of the plume

round the south end of the barrier with a concentration that is
igher than the allowable concentration. If the bypass is detected
ith the additional samples during the design phase, the design can

e changed by extending the length of the barrier, thus preventing
potential failure due to insufficient site characterization.

A comparison between MCI and LV was performed to find
ut which of these sampling approaches is most efficient at
reventing a potential failure of the PRB by missing an impor-
ant hydrogeologic structure. The QDE approach can be used to
irect exploration based on any model output, which for this
ase could be head or concentration. We applied MCI and LV
o both head uncertainty and concentration uncertainty. Fig. 4
hows the LV maps for head and concentration, and the MCI map
he next sampling locations, the LV map for head in Fig. 4(a)
as employed. It shows two regions having similarly high val-
es, thus indicating locations to sample. Regardless of the QDE
ethod, the concentration distribution in Fig. 4(b) and (c) shows
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Table 4
Additional sampling locations and measured hydraulic conductivities from MCI and LV for head and concentration

Approach Updating X (m) Y (m) Hydraulic conductivities (m/day)

LV for head

1st 82.3 85.3 9.1
54.9 3.0 15.2

2nd 82.3 76.2 9.1
57.9 0.0 15.2

M
1st 39.6 48.8 3.0

6

L
7
5

a
i
s
t
p
A
w
T

a

F
a
e
d
s

F
c

CI for concentration 2nd 36.

V for concentration
1st 42.
2nd 33.

region of high values, which is behind the barrier. Based on this
nformation, we chose two sampling points from Fig. 4(a) and one
ampling point from Fig. 4(b) and (c). The LV map for head in Fig. 4(a)
ends to find the southern portion of the barrier, but the next sam-
ling locations are very close to the previously sampled locations.

s was done in the previous example, two rounds of exploration
ere performed and the additional sampling data are listed in

able 4 for each approach.
Fig. 5 shows the K and concentration distributions from the three

pproaches produced from the model using the Ks listed in Table 4.

d
t
z
b
c

ig. 5. K and predicted concentration distributions. (a) K and (b) concentration from LV
oncentration uncertainty using eight samples, and (e) K and (f) concentration from LV fo
51.8 2.4

45.7 3.0
42.7 2.4

or directing exploration based on concentration uncertainty, the
dditional sampling from both the MCI and LV approaches are gath-
red around the barrier because this directed exploration is highly
ependent on the predicted distribution of concentration. The
trong dependency on the predicted concentration also causes the

ependency on the simulation time as the concentration distribu-
ion significantly changes with time. Therefore, the high conductive
one at the south end of the barrier was only revealed by the MCI
ased on head uncertainty. Fig. 5(b), (d), and (f) shows the predicted
oncentration at 100 days from three approaches. As expected from

for head uncertainty using ten samples, (c) K and (d) concentration from MCI for
r concentration uncertainty using eight samples.
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he K distributions in Fig. 5(a), (c), and (e), only the MCI for head
ncertainty revealed the potential bypass of contaminant at the
outh end of the barrier.

. Conclusion

A QDE approach using the MCI parameter to output covariance
as presented for PRB remediation. As the PRB strongly relies on

he groundwater distribution in the subsurface, additional data
educing uncertainty of site conditions and model predictions is
onsidered beneficial. This approach was applied to the Kansas City
lant case and implies that the additional site exploration during
he design phase could have prevented the remedial failure that was
aused by missing a geologic body having high hydraulic conduc-
ivity at the south end of the barrier. The MCI parameter approach
learly indicates where the next sampling should be made to reduce
he uncertainty of the model prediction, while the LV approach can
irect exploration to a previously sampled location. The compari-
on between LV and MCI for head uncertainty and concentration
ncertainty shows that MCI for head uncertainty was able to find
he bypass of contaminant due to the high hydraulic conductivity
t the south end of barrier. In order to guarantee the results, more
eal case studies are required in the future.
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